Paediatric CT Practice - How safe is imaging in different countries?

Improving patient care in paediatric CT: appropriateness, awareness, optimisation and real-time monitoring

We present here our experience of implementing radiation protection in paediatric CT, comparing with national reference levels, assessing appropriateness and showing improvements.

1. How radiation protection during paediatric CT is practised in the facility

There are several ways UZ Leuven minimises radiation dose during CT imaging of children:

- appropriateness;
- customisation of the CT dose to the child size;
- use of high-end CT scanners.

The technical innovations listed below are also applied to all our paediatric exams, unless otherwise stated. Specifically, we use:

- fast scanning technique (when appropriate, 10% of the thorax cases);
- dose shaping filter dedicated to children;
- adaptive shielding;
- tube current modulation;
- automatic selection of kV preferably low (70-80 kV);
- iterative reconstruction techniques.

Additionally we use other principles for paediatric protocol definition:

- patient centring, scanning minimum anatomical area, using shortest rotation time, decreasing baseline mAs according to body diameter; avoiding major overlap of adjacent areas;
- accepting higher noise than in adults.

2. List of the facility’s CTDI and DLP for children from different age groups

The tables below report patient CTDIvol and DLP as extracted from the dose reports of 580 paediatric (0-18 years) CT exams (head, thorax, abdomen), from November 2012 to September 2013, in UZ Leuven, Belgium.

Table IV reports the national DRLs, as found on http://www.qaelum.com/), a software tool is being developed to create a web repository of all CT protocols, as well as track voluntary and involuntary changes and patient-specific dose.

In UZ Leuven we started a quality initiative, with the aim of harmonising and optimising CT protocols, as well as track voluntary and involuntary changes and patient-specific dose.

3. Assessment of the number of paediatric CT examinations that lack appropriateness

The number of paediatric CT examinations that lack appropriateness is not systematically assessed. Typically the radiologist calls the referral clinician and suggests an alternative examination (or rejects the exam if necessary). Empirical data obtained by means of private conversation with radiologists suggest that this is roughly around 15%-20%, and the majority of them are trauma and oncology patients.

4. Number of paediatric CT referrals that are reviewed by radiologists before giving appointments

This information is currently not available. However we are planning to address this at our department by implementing a decision support tool in our electronic system, which can used by physicians to request (CT) examinations (e.g. KWS -RIS). Specifically, the idea is to implement the RZiV (Rijksinstituut voor Ziekte- en Invaliditeitsverzekering) indicated diagnostic procedures for specific clinical symptoms and known diagnosis provided by the patient.

5. Improvements after the implantation of child-tailored radiation protection

In UZ Leuven we started a quality initiative, with the aim of harmonising and optimising CT procedures, with special attention to children. In collaboration with a university spin-off, Gaekum (http://www.gaekum.com/), a software tool is being developed to create a web repository of all CT protocols, as well as track voluntary and involuntary changes and patient-specific dose.

Below, table IV reports patient CTDIvol and DLP of 84 paediatric (0-18 years) head CT exams, from January 2004 to December 2006. Between brackets the dose reduction with respect to current values (as from table I) is reported. On average a dose reduction (CTDIvol) across the years of 27% (as from table I) is reported. On average a dose reduction (CTDIvol) across the years of 27% (as from table I) is reported. On average a dose reduction (CTDIvol) across the years of 27% (as from table I) is reported. On average a dose reduction (CTDIvol) across the years of 27% (as from table I) is reported.