

Ask EuroSafe Imaging Tips & Tricks

Interventional Radiology Working Group

How to control or reduce staff doses during IR procedures

Tommy Berglund (St. Olavs University Hospital, NO)
Philipp Wiggermann (University Hospital Regensburg, DE)
Virginia Tsapaki (Konstantopoulio General Hospital, Athens, GR)

Using protective clothing is mandatory

EUROSAFE IMAGING

In addition, it is recommended to wear protective eyewear when working with complicated procedures on a regular basis

Image from Scanflex Medical

We have to be aware of where the scattered radiation is at the different projections during the procedure

The patient is the source of scattered radiation Be aware of your positioning during IR procedures

Optimise the use of additional protection devices

Frame rate during imaging

- □ Frame rate has a big influence on the total dose to the patient, <u>and</u> the amount of scattered radiation dose to the staff
- The imaging series make up the majority of the radiation dose during a normal IR procedure
- A critical review of the number of images in each series during an IR procedure is recommended

Distribution of radiation dose by imaging series and fluoroscopy

<u>Examples from cases at St. Olav University Hospital in Trondheim/Norway:</u>

- Lower extremity angiography (1) \rightarrow 25 % of the total DAP comes from fluoroscopy and about 30 % of the total AK
- Lower extremity angiography (2) \rightarrow 8 % of the total DAP comes from fluoroscopy and about 13 % of the total AK
- \square PCI (Percutaneous Coronary Intervention) slim woman \rightarrow 35 % of the total DAP comes from fluoroscopy
- \square SCA (Selective Coronary Angiography) normal man \rightarrow 7 % of the total DAP comes from fluoroscopy
- PCI large man → 21 % of the total DAP comes from fluoroscopy
- \square SCA normal man \rightarrow 28 % of the total DAP comes from fluoroscopy
- ightharpoonup PCI normal man ightharpoonup 32 % of the total DAP comes from fluoroscopy

Pulse rate during fluoroscopy

- The pulse rate also has a direct impact on the patient dose <u>and</u> the amount of scattered radiation to the staff
- □ Fluoroscopy normally accounts for a smaller part of the total dose contribution than the imaging series during an IR procedure (ref. previous slide)
 - But maybe easier to change in a regular clinical environment?
 - A critical review of the number of pulses per second used during an IR procedure is recommended

Contrast timing and imaging

- ☐ The interventional physician starts the imaging series before the contrast begins to fill the blood vessels
- Through optimisation, you can evaluate the routines for starting the image series, avoiding too many images without contrast in the vessels
 - This can reduce the radiation dose to both the patient and the staff
- Example:
 - □ Cardiac series involves 15 frames per second → two seconds unnecessary exposure before the contrast arrives = 30 images

Collimation

Example of dose reduction with a small reduction in field size

Example of dose reduction with a larger reduction in field size

Moderate collimation has a good effect on the image quality and the dose to the patient <u>and</u> staff because of the reduction of scattered radiation

Scattered dose rate is higher when field size increases

Scattered dose rate is lower when distance to the patient increases

Inverse square law helps protecting the staff

It is possible to use an extension hose to increase the distance from the radiation source

Image from «Examples of good and bad radiation protection practice" - IAEA

Distance between patient and detector

1st position: Large distance between patient and detector = High dose

2nd position: Small distance between patient and detector = Low dose

From "Optimization of Radiation Protection in Cardiology" - IAEA

Short operator?

- When the operator is short, the use of a bench is recommended.
- It will make it possible to increase the tube-patient distance, which will reduce
- the patients skin dose.
- It <u>also</u> makes it easier to keep a short patient-detector distance to reduce <u>scattered</u> radiation.

Without a bench

With a bench

This is described in the article:

Rigatelli et al, 2016 – «<u>Impact of operators height on individual radiation exposure</u> Measurements during catheter-based cardiovascular interventions»

Real time radiation insight

- Real time monitoring of the radiation dose to the staff is a very effective learning tool in an IR laboratory
- The staff gets immediate feedback about
 - How they are using the extra protective shielding
 - The relation between the distance to the radiation source and dose
 - How the different angulations influences the direction of scattered radiation
 - How imaging series and fluoroscopy influences the dose rate differently and how changes in framerate and pulse rate effects the scattered dose

In general

