Ask EuroSafe Imaging Tips & Tricks

Paediatric Imaging Working Group

Radiation Protection in the Neonatal Intensive Care Unit

Claudio Granata (IRCCS Istituto Giannina Gaslini, IT)
Jennifer Grehan (University College Dublin, IEE)
Alexander Schegerer (Federal Office for Radiation Protection, DE)
Introduction

In western countries, the percentage of preterm infants below 37 weeks gestation is around 15%, with most of them requiring admission to Neonatal Intensive Care Unit (NICU).

Problem: Although preterm infants (< 3kg) and newborns (< 5kg) are the most radiation sensitive age-group, they require frequent chest and abdominal X-ray studies during their stays in NICU. Moreover, lower birth weight and gestational age, and longer hospital stays are associated with more frequent X-ray studies.\(^{(1)}\)
Introduction

- Mean number of radiographs performed in different NICUs largely varies, ranging from 3 to 35 examinations per infant.\(^{(1,2)}\)

- Furthermore, there is large variation in patient’s dose applied in different facilities.\(^{(3)}\)

- **Problem:** These differences across published data do not reflect differences in variable severity of illness, only, but differing radiographic techniques or standards of practice.
Solution: Justification & Optimisation

In paediatric radiology, strict and clear operation procedures are required to implement the principles of radiation protection. This involves:

- Compliance with national diagnostic reference levels (DRLs), if existing, or with European DRLs:

<table>
<thead>
<tr>
<th></th>
<th>European DRL(^{(4)})</th>
<th>IT DRL (^{(4)})</th>
<th>German DRL(^{(5)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP/PA < 3kg</td>
<td></td>
<td></td>
<td>DAP = 3 mGy cm(^2)</td>
</tr>
<tr>
<td>AP/PA < 5kg</td>
<td>DAP = 15 mGy cm(^2)</td>
<td>ESD = 80µGy</td>
<td>DAP = 5 mGy cm(^2)</td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP < 5 kg</td>
<td>DAP = 45 mGy cm(^2)</td>
<td></td>
<td>DAP = 20 mGy cm(^2)</td>
</tr>
</tbody>
</table>

AP: anterior-posterior; PA: posterior-anterior; DAP: dose area product; ESD: entrance surface dose.
Solution: Optimisation

- Use of modern systems (e.g., high detective dose efficiency, digital).
- Adaption of protocol parameters such as the mAs-product, tube voltage (low tube voltages, < 80kV) and filter (add 0.1 mm copper filter) to the size of patient’s body region being examined.\(^{(6)}\)
- Proper centering and collimation.\(^{(7)}\)
- Reduction of magnification. For this, the imaging plate should be wrapped in a disposable polyethylene bag and placed under the newborn in direct contact with their body.
- Adequate immobilisation (e.g., restless kids should be kept still by parents).
Chest X-ray: the requisites\(^{(8-10)}\)

- Patient supine - centralise chin to limit rotation.
- Symmetric view of the thorax with no rotation.
- Region of interest should extend from lower jaw bone (to see the proper position of a ventilation tube) to 1\(^{st}\) lumbar vertebrae and to skin borders laterally.
- Visualisation of the trachea, proximal bronchi, vascular pattern, diaphragm and costophrenic angles, spine, paraspinal structures, retrocardiac lung, mediastinum, clavicles, rips.
Abdomen X-ray: the requisites\(^{(8-10)}\)

- Patient supine – centralise chin to avoid rotation.
- Visualisation from the diaphragm to ischial tuberosities, including the lateral abdominal walls.
- Reproduction of the properitoneal fat lines consistent with age.
- Clear visualisation of the spine, kidney outlines, psoas outline, and bones.
- Lateral projection (after supine has been performed) may be required to evaluate air-fluid levels and free peritoneal air.
Chest and abdomen combined studies

- Because nearly all radiosensitive body organs are involved during a combined thoracic-abdominal radiograph, these examinations should be performed with caution.

- On average, a dose value of DAP=10 mGycm² can be achieved in newborns when modern X-ray devices are used.\(^{(11)}\)

- The only indication for a combined chest and abdomen radiograph is the visualisation of umbilical catheters spanning both body compartments.
Shielding

- Direct shielding of the ovaries or testes is very difficult, because newborns are very small and their limbs are often contracted.

- The dose exposure caused by an abdomen X-ray is very low. Right placement of the patient, correct collimation, and added filtration limit the gonad exposure to few dozens of µGy.

- For these reasons, shielding should be avoided, as it could hide anatomical structures and cause the repetition of the examination.
Environmental radiation exposure in NICU

- A few studies have addressed the issue of radiation exposure for medical staff and family members in proximity of a X-ray study performed in the NICU.

- These studies have demonstrated that scatter radiation is extremely limited:\(^{(12,13)}\)
 - scatter radiation levels of 0.024 µGy, 0.0027 µGy, and 0.041 µGy for chest X-ray, babygrams and skull radiography have been reported\(^{(13)}\)
Environmental radiation exposure in NICU

- Consequently, shifting or shielding of adjacent patients is not necessary if they remain at least one meter from the radiation isocenter.\(^{(16)}\)

- When distance is less than one meter, scattered radiation can be avoided with movable lead wall placed between adjacent isolettes.

- Similarly, as long as at a sufficient distance, medical staff and caregivers do not need to leave the vicinity when a radiographic examination is performed in the NICU.\(^{(14)}\)
References

