Ask EuroSafe Imaging

Tips & Tricks

CT Working Group

The use of bi-phase injection protocols to reduce the number of acquisition phases and radiation dose

Alban Gervaise (Medical Imaging Department, HIA Bégin, Saint-Mandé, FR)
Mika Kortesniemi (HUS Medical Imaging Center, University of Helsinki, FI)
Dean Pekarovic (University Hospital Ljubljana, SI)

Kindly provided by Eileen Kelly (Radiographer, Galway University Hospital, Ireland)
Key points

- CT multiphase protocols are essential to characterise lesions in liver, renal, pancreatic and adrenal CT
- Typically 3/4 phases are acquired including acquisitions before and after administration of contrast media
- Thus increasing radiation dose significantly
- Bi-phase injection protocols allow a ‘2 or 3 in 1’ acquisition, reducing radiation dose
- The use of bi-phase injection protocols results in a reduced number of acquisitions without compromising contrast enhancement of the region of interest
Key points

- Note bi-phase injection protocols are not recommended for all indications.
- Bi-phase injection protocols involve injecting an initial bolus of contrast, waiting a predefined period of time followed by a second bolus of contrast. Acquisition is then started after a pre-defined period of time.
- Bi-phase protocols can be easily stored in contrast injectors memory.
- Bi-phase protocols are most frequently used in CT Thorax Abdomen Pelvis and CT Urography acquisitions.
- Bi-phase protocols can be applied to liver, neck and pancreatic acquisitions.
- Note bi-phase is also referred to as ‘split-bolus’ protocol.
Protocols

Standard CT Thorax Abdomen Pelvis Protocol

- 80-100mls contrast IV
- Thorax acquisition @ 35s approx. post IV
- Abdomen acquisition @ 70s approx. post IV
- Significant overlap of scanned volume (shaded area on image)

Bi-phase Injection CT TAP Protocol

<table>
<thead>
<tr>
<th>Injection Type</th>
<th>Rate</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>60mls @ 3mls/s</td>
<td>3mls/s</td>
<td>17 second delay</td>
</tr>
<tr>
<td>40mls @ 3mls/s</td>
<td>3mls/s</td>
<td>20 second delay</td>
</tr>
</tbody>
</table>

- Single acquisition eliminates scanned volume overlap in region of lung bases/upper liver
Protocols

Standard CT Urogram Protocol

- 3-phase acquisition
- Unenhanced, nephrographic, excretory

Bi-phase Injection Protocol

- Combine nephrographic and excretory phases into one acquisition
- Inject initial bolus followed by 300 second delay and then administer second bolus
- Combined phase acquisition is started following 100 seconds
- High sensitivity, specificity and accuracy for detection of upper tract tumours reported (Maheshwari et al, 2010)
- Up to 59% less radiation dose reported in phantom studies (Vrtiska et al, 2009)

\[
\begin{align*}
50\text{mls} @ 3\text{mls/s} & \quad 300\text{ second delay} & \quad 80\text{mls} @ 3\text{mls/s} & \quad 73\text{ second delay} \\
\text{Total Acquisition Delay} & \quad 417\text{ seconds} & \\
\text{Nephrographic delay} & \quad 100\text{ seconds} \\
\end{align*}
\]

(Protocol adapted from Maheshwari et al, 2010)
Images from bi-phase CTU protocol. Contrast opacification of renal pelvis displaying TCC with simultaneous enhancement of renal parenchyma.

Images courtesy Guite, Hinshaw & Lee (2013)
Protocols

Standard TAP trauma CT protocol
- 2-phase acquisition
- TAP arterial phase and AP venous phase

Bi-phase Injection Protocol
- Combine arterial and venous phases in one TAP acquisition
Protocols

Standard CT Pancreas Protocol

- 3-phase acquisition
- Unenhanced, pancreatic parenchymal, portal venous phases

Bi-phase Injection Protocol

- Combine pancreatic parenchymal and portal venous phases into one acquisition
- Bi-phase protocol results in vascular liver, pancreatic attenuation and tumour conspicuity equal to or greater than that with multiphase CT (Brook et al. 2013)
- 43% less radiation dose reported (Brook et al. 2013)

<table>
<thead>
<tr>
<th>90mls @ 3mls/s</th>
<th>30 sec delay</th>
<th>40mls @ 3mls/s</th>
</tr>
</thead>
</table>

Total Acquisition Delay 73 seconds
Protocols

Standard Neck CT Protocol
- 2-phase acquisition
- Vascular and delayed phases

Bi-phase Injection Protocol
- Combine vascular and delayed phases into one acquisition
- Inject initial bolus for tissue impregnation followed by second bolus for vascular opacification
- Better visualisation of neck tumour and vascular environment (Jung-Hyung Lee et al. 2012)

50mls @ 2mls/s 30 second delay 30mls @ 2mls/s 20 second delay Total Acquisition Delay 90 seconds

Bi-phase injection neck CT. Contrast opacification of tumour with simultaneous enhancement of vessels.
Summary

• Bi-phase/split-bolus protocols should be considered as a radiation dose reduction technique
• This protocol can be applied to routine CT TAP, CT Urography, CT neck and CT liver & pancreas
• Without compromise to diagnostic accuracy
• Contrast protocols can be easily stored in injector memory
• Significant radiation dose reduction have been reported compared with traditional multiphasic protocols

