

Ask EuroSafe Imaging

Tips & Tricks

CT Working Group

The use of bi-phase injection protocols to reduce the number of acquisition phases and radiation dose

Alban Gervaise (Medical Imaging Department, HIA Bégin, Saint-Mandé, FR)

Mika Kortesniemi (HUS Medical Imaging Center, University of Helsinki, FI)

Dean Pekarovic (University Hospital Ljubljana, SI)

Kindly provided by Eileen Kelly (Radiographer, Galway University Hospital, Ireland)

Key points

- CT multiphase protocols are essential to characterise lesions in liver, renal, pancreatic and adrenal CT
- Typically 3/4 phases are acquired including acquisitions before and after administration of contrast media
- Thus increasing radiation dose significantly
- Bi-phase injection protocols allow a '2 or 3 in 1' acquisition, reducing radiation dose
- The use of bi-phase injection protocols results in a reduced number of acquisitions without compromising contrast enhancement of the region of interest

Key points

- Note bi-phase injection protocols are not recommended for all indications
- Bi-phase injection protocols involve injecting an initial bolus of contrast, waiting a predefined period of time followed by a second bolus of contrast. Acquisition is then started after a pre-defined period of time
- Bi-phase protocols can be easily stored in contrast injectors memory
- Bi-phase protocols are most frequently used in CT Thorax Abdomen Pelvis and CT Urography acquisitions
- Bi-phase protocols can be applied to liver, neck and pancreatic acquisitions
- Note bi-phase is also referred to as 'split-bolus' protocol

Standard CT Thorax Abdomen Pelvis Protocol

- 80-100mls contrast IV
- Thorax acquisition @ 35s approx. post IV
- Abdomen acquisition @ 70s approx. post IV
- Significant overlap of scanned volume (shaded area on image)

Bi-phase Injection CT TAP Protocol

60mls @ 3mls/s 17 second delay 40mls @ 3mls/s 20 second delay

Total Acquisition Delay 70s

Single acquisition eliminates scanned volume overlap in region of lung bases/upper liver

Standard CT Urogram Protocol

- 3-phase acquisition
- Unenhanced, nephrographic, excretory

Bi-phase Injection Protocol

- Combine nephrographic and excretory phases into one acquisition
- Inject initial bolus followed by 300 second delay and then administer second bolus
- Combined phase acquisition is started following 100 seconds
- High sensitivity, specificity and accuracy for detection of upper tract tumours reported (Maheshwari et al, 2010)
- Up to 59% less radiation dose reported in phantom studies (Vrtiska et al, 2009)

Images from bi-phase CTU protocol. Contrast opacification of renal pelvis displaying TCC with simultaneous enhancement of renal parenchyma.

Standard TAP trauma CT protocol

- 2-phase acquisition
- TAP arterial phase and AP venous phase

Bi-phase Injection Protocol

 Combine arterial and venous phases in one TAP acquisition

Split-bolus injection scheme in trauma CT

Standard CT Pancreas Protocol

- 3-phase acquisition
- Unenhanced, pancreatic parenchymal, portal venous phases

Bi-phase Injection Protocol

- Combine pancreatic parenchymal and portal venous phases into one acquisition
- Bi-phase protocol results in vascular liver, pancreatic attenuation and tumour conspicuity equal to or greater than that with multiphase CT (*Brook et al. 2013*)
- 43% less radiation dose reported (Brook et al. 2013)

50mls @ 2mls/s

Protocols

Standard Neck CT Protocol

- 2-phase acquisition
- Vascular and delayed phases

Bi-phase Injection Protocol

- Combine vascular and delayed phases into one acquisition
- Inject initial bolus for tissue impregnation followed by second bolus for vascular opacification
- Better visualisation of neck tumour and vascular environment (Jung-Hyung Lee et al. 2012)

Bi-phase injection neck CT.
Contrast opacification of tumour with simultaneous enhancement of vessels.

30 second delay 30mls @ 2mls/s 20 second delay

Total Acquisition Delay 90 seconds

Summary

- Bi-phase/split-bolus protocols should be considered as a radiation dose reduction technique
- This protocol can be applied to routine CT TAP, CT Urography, CT neck and CT liver & pancreas
- Without compromise to diagnostic accuracy
- Contrast protocols can be easily stored in injector memory
- Significant radiation dose reduction have been reported compared with traditional multiphasic protocols

References

- Alderson SA, Hilton S, Papanicolaou N. MDCT urography: Review of technique and spectrum of diseases.
 Applied Radiology 2011;40(7):6-13.
- Brook OR, Gourtsoyianni S, Brook A, Siewert B, Kent T, Raptopoulos V. Split-Bolus Spectral Multidetector CT of the Pancreas: Assessment of Radiation Dose and Tumor Conspicuity. Radiology 2013;269(1):139-48.
- Guite KM, Hinshaw JL, Lee Jr FT. Computed Tomography in Abdominal Imaging: How to Gain Maximum Diagnostic Information at the Lowest Radiation Dose, 2013, available at ttp://dx.doi.org/10.5772/55903 [accessed 11/8/2016]
- Jun-Hyung L, Chang-Woo R, Sun-Mi K, Eui-Jong K Woo-Suk C. Usefulness of Biphasic Contrast Injection in Multidetector CT of the Head and Neck: A comparison with Monophasic Contrast Injection. J Korean Soc Radiol 2012;67(2):85-92.
- Leung V, Sastry A, Woo TD, Jones HR. Implementation of a split-bolus single-pass CT protocol at a UK major trauma centre to reduce excess radiation dose in trauma pan-CT. Clin Radiol 2015;70(10):1110-5.
- Maheshwari E, O'Malley ME, Ghai S, Staunton M, Masse C. Split-Bolus MDCT Urography: Upper Tract Opacification and Performance for Upper Tract Tumors in Patients With Hematuria. AJR 2009;194;453–8.
- Vrtiska, TJ, Hartman, RP, Kofler JM, Bruesewitz, MR, King, BF, McCollough, CH. Spatial Resolution and Radiation Dose of a 64-MDCT Scanner Compared with Published CT Urography Protocols. AJR 2009; 192:941–8.

