

Ask EuroSafe Imaging Tips & Tricks

IR Working Group

Medical Simulators for Training in Dose Management and Radiation Protection

G. Bartal MD, DFCIRSE, FSIR, Tel Aviv, Israel
R. Sánchez Hospital San Carlos & Universidad Complutense. Madrid, Spain
B. Hallinan, Beaumont Hospital, Dublin, Ireland

Why Simulation?

Medical Simulation is

- a cross-disciplinary,
- realistic,
- and economical training and feedback method

Why Simulation?

- Trainees can repeatedly practice & review tasks and processes
- Using physical or virtual reality models (ranging from low to high fidelity), to identify and understand factors which control the system and/or predict its future behavior
- Simulation is used to develop, maintain and improve skills of Image Guided Interventionalists in a protected environment until proficiency is achieved
- Without harming patients

Endovascular Simulators

- Shorten the training course
- Provide a safe, virtual, but realistic atmosphere for procedure performance
 - No radiation exposure
- Provide a complete log of the procedure, also considering:
 - Fluoroscopy time
 - Patient exposure
 - Estimate of operator exposure

Any Feature of Cath. Lab Equipment Can Be Simulated

- State of the Art Angiography systems have:
 - Virtually unlimited Fluoroscopy time,
 - DSA,
 - Road Maps,
 - Cone-beam CT and many other options that are based on Ionizing Radiation

Virtual Reality Simulators

- Significant differences have been noted between preand post-training performance of procedures when using medical virtual reality simulators
 - with shortening of procedure and fluoroscopy time [1]
- Virtual reality simulation provides a
 - risk-free (including radiation-free) setting
 - in which technical skills can be obtained through repetition [2]

Procedure Planning

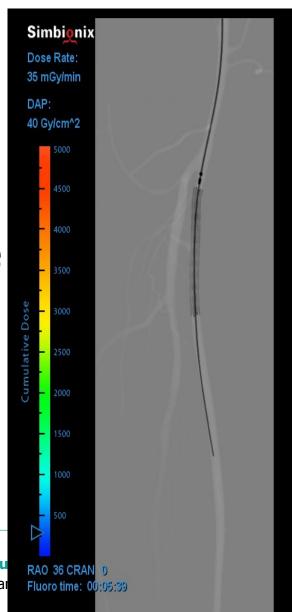
- Procedure planning should integrate dose management measures
- The goal is an efficient and optimal use of radiation
 - not an irrational fear or negligence
- Simulation is based on accurate procedure planning

Radiation Protection Simulation - Goals

- Build up physician's awareness to dose levels during interventions
- To provide tools for dose reduction methods

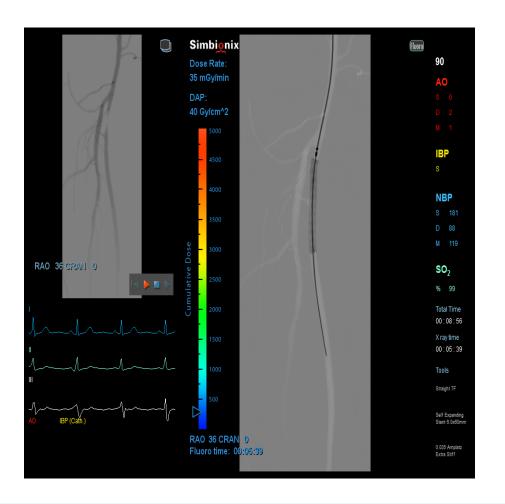
- To practice dose management as an integral part of the hands-on simulation
 - shorten procedure and fluoroscopy time
- To provide scoring and subjective performance metrics
 - measure results
 - follow-up improvement

Real Time Dose Display

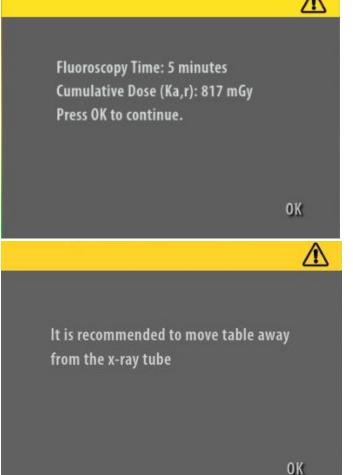

Dose Rate/Cumulative Dose (mGy)

Side Bar with Cumulative Dose/Dose Rate

DAP mGycm²



Off-Fluoro Collimation



Messages and Alerts

These alerts are displayed intermittently according with time of procedure

Performance and Dose Report EUROSAFE

Displayed at the end of each session

Stored in the system in order to follow-up the progress of trainee

Radiation Safety Plug-in ESR EUROSAFE IMAGING

Radiation Safety package

- Realistic and safe radiation safety training
- Hands-on training to newly-hired or current staff
- Hospital credentialing and privileging
- Skill center radiation training for nurses and techs
- Implementing an effective radiation safety program

Procedure Training Objectives

- Balancing between dose and image quality ALARA
- Understanding deterministic and stochastic effects
- Understanding when and why high doses occur
- Adjusting table and detector height for optimal exposure
- Use of LIH, pulse rate and dose level to limit fluoroscopy dose
- Cine and DSA, frame rate and fluoro store
- Magnification, collimation, wedge filters, and virtual guidance

Procedure Training Objectives

- Reducing dose for steep angulation or large patients
- Varying beam angle and keeping extremities out of the beam
- Staff positions relative to direct beam and scatter
- Benefits of using protective wear and shielding
- Lowering dose throughout the case, not just after a notification

Summary

- Medical Simulation is an integral part of training personnel in the interventional suite
 - State of the art endovascular simulators allow training in complex interventions without staff radiation exposure
 - Effective and safe procedure performance saves exposure
- Virtual and augmented reality will become an indispensable tool in medical simulation and training [4]
- Simulation training is an effective tool for creating safe environment and prevention of unnecessary patient and staff exposure

REFERENCES

- 1. Management of Patient and Staff Radiation Dose in Interventional Radiology: Current Concepts. Bartal G, Vano E, Paulo G, Miller D. Cardiovasc Intervent Radiol (2014) 37:289–298
- 2. Weisz G et al (2007) The use of interventional cardiovascular simulation to evaluate operator performance: the carotid assessment of operator performance by the Simbionix carotid Stenting Simulator Study (ASSESS). J Soc Simulation Healthcare 2(1)
- 3. Van Herzeele I, Aggarwal R, Neequaye S, Hamady M et al (2008) Experienced endovascular interventionalists objectively improve their skills by attending carotid artery stent training courses. Eur J Vasc Endovasc Surg 35(5):541–550
- 4. Is there a place for virtual reality simulators in assessment of competency in percutaneous renal access? Yasser A. Et al. World Journal of Urology volume 34, pages 733–739(2016)

